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Introduction

• Repeated measurements or within-subjects design are several measurements of the

same variable for the same subject or observational unit.

• The observational units are what you take measurements on.

• Several points of time: when patients are repeatedly measured in an follow-up period,

i.e. monitoring a person’s health over time after treatment.

• Several locations: measurements at several locations in the body of the same person

(left and right eye, several slices in a MRI image).

• Several conditions: when the same patient is measured under two or more different

conditions (for example before and after a treatment).
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Introduction

• Repeated measures ANOVA looks like a paired-samples t test, but with three or more

conditions.

• Repeated measures ANOVA is available only for continuous dependent variables which

are normally distributed.

• All of the subjects are simultaneously measured at fixed times or under fixed conditions.

3



Example

• Example: we study the change of 25 local dialects in the Netherlands and Flanders.

• The locations are the observational units.

• For each location we consider the change in:

◦ Lexis, for example in Slochteren ontdaan ‘upset’ is translated as veraldereerd by

the elderly and as ontdoan by young people.

◦ Morphology, for example in Slochteren ineens ‘suddenly’ is translated as inainen by

the elderly and as inains by young people.

◦ Sound components, for example in Slochteren vraagt ‘asked’ is translated as vragt

by the elderly and as vroagt by young people.
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Example

• The measurements are obtained on the basis of a sample of 125 words which are

translated by speakers in each of the 25 locations in the period 2008–2011.

• In each location older men (60 years and older) and young female (between 20 and 40

years old) are recorded. For each location we measure:

◦ Lexical change: percentage of words in which young people chose another lexeme

than the elderly.

◦ Morphological change: percentage of words which younger people inflected differently

from the elderly.

◦ Change in the sound components: percentage of sounds in words which younger

people pronounced differently from the elderly.
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Budel

Deerlijk

Den Burg

Diepenbeek

Dokkum

Dordrecht

Grolloo

Grouw

Huizen

IJmuiden
Kampen

Kerkrade

Lunteren

Maldegem

Naaldwijk

Nijverdal

Oostende

Overijse

Pannerden

Poperinge

Rijkevorsel

Sint−Oedenrode

Slochteren

Tegelen

Zierikzee

Locations of the 25 dialects. 18 locations are found in the Netherlands and seven locations

are found in Flanders.
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country plaats lexis morph sound

1 Budel 9 4 13
2 Deerlijk 21 10 19
1 Den Burg 30 11 12
2 Diepenbeek 29 14 19
1 Dokkum 12 11 12
1 Dordrecht 18 7 8
1 Grolloo 17 10 14
1 Grouw 16 7 9
1 Huizen 19 7 16
1 IJmuiden 26 0 11
1 Kampen 11 7 11
1 Kerkrade 13 15 13
1 Lunteren 23 4 15
2 Maldegem 39 13 20
1 Naaldwijk 31 3 11
1 Nijverdal 12 6 7
2 Oostende 33 3 13
2 Overijse 20 16 12
1 Pannerden 16 3 16
2 Poperinge 30 7 11
2 Rijkevorsel 17 15 16
1 Sint-Oedenrode 41 5 13
1 Slochteren 24 34 14
1 Tegelen 8 18 13
1 Zierikzee 15 14 12

The table shows the percentage of words (lexis, morph) or sounds (sound) that changed for each location.
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Example

A boxplot is given for the measurements of each of the linguistic levels.

8



Example

• Question: is the extent to which local dialects changed the same for all of linguistic

levels?

• This question can be answered by means of a one-factor ANOVA test.

• However, the measurements for each of the linguistic levels are repeated measures.

• In our example: for each dialect we have a triple: lexical change, morphological change,

change in the sound components.

• Generally a repeated measures ANOVA test is more powerful to detect significance than

a one-factor ANOVA test.
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Repetition: one-factor ANOVA

• Hypotheses:

H0: All of groups have the same population mean.

Ha: Not all of them are the same.

• Test statistic:

F =
MSG

MSE
=

variation between groups

variation within groups
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Calculation of MSG

• Variation between groups is measured by MSG (Mean Sum of Squares Group): the

averaged squared deviation of group means compared to the global mean.

• Group means: 21.1 (lexis), 9.7 (morph), 13.2 (sound). Global mean: 14.7.

• SSG = Sum of Squares Group:

SSG =

I∑
i=1

ni(xi − x)
2
=

(21.1 − 14.7)
2 × 25 +

(9.7 − 14.7)
2 × 25 +

(13.2 − 14.7)
2 × 25

= 1705.3
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Calculation of MSG

• DFG = Degrees of Freedom Group = I − 1 = 3 − 1 = 2.

• MSG = SSG / DFG = 1705.3 / 2 = 852.6.
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Calculation of MSE

• Variation within the groups is measured by MSE (Mean Sum of Squares Error): average

squared deviation of the observations compared to their group means.

• Group means: 21.1 (lexis), 9.7 (morph), 13.2 (sound).

• SSE = Sum of Squares Error:

SSE =

I∑
i=1

ni∑
j=1

(xij − xi)
2
=

(9 − 21.1)
2
+ (21 − 21.1)

2
+ ... +

(4 − 9.7)
2
+ (10 − 9.7)

2
+ ... +

(13 − 13.2)
2
+ (19 − 13.2)

2
+ ...

= 3408.0
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Calculation of MSE

• DFE = Degrees of Freedom Error = N − I = 75-3 = 72

• MSE = SSE / DFE = 3408.0/72 = 47.3
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Calculation of test statistic F

• Test statistic:

F =
MSG

MSE
=

852.6

47.3
= 18.0

• ANOVA table in SPSS:
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Calculation of MSE*

• Variation in SSE may have many causes, for example measurement errors, factors not

controlled by the researcher, the weather, etc.

• The larger part of SSE may be the result of individual differences between the

observational units.

• However: in a repeated measures design we have the same observational units in

each group, and therefore the same individual differences!

• We want to remove the effect of individual differences on SSE.

• We calculate SSE* (and MSE*): variation within groups minus the differences between

the observational units.
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Calculation of MSE*

• SSE* = SSE - SSS.

• SSS = Sum of Squares for Subjects. SSS measures the variation between observational

units:

SSS = I ×
ni∑
j=1

(xj − x)
2

where x is the global mean (14.7) and xj is the mean of the observations per

observational unit.

• In our case: for the dialect in location j xj is the mean of the lexical change, the

morphological change and the change in the sound components.

• ni is the number of observational units within the group, which is for all groups the

same in a repeated measures design.
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country plaats lexis morph sound mean

1 Budel 9 4 13 9
2 Deerlijk 21 10 19 16
1 Den Burg 30 11 12 17
2 Diepenbeek 29 14 19 21
1 Dokkum 12 11 12 12
1 Dordrecht 18 7 8 11
1 Grolloo 17 10 14 14
1 Grouw 16 7 9 11
1 Huizen 19 7 16 14
1 IJmuiden 26 0 11 12
1 Kampen 11 7 11 10
1 Kerkrade 13 15 13 14
1 Lunteren 23 4 15 14
2 Maldegem 39 13 20 24
1 Naaldwijk 31 3 11 15
1 Nijverdal 12 6 7 8
2 Oostende 33 3 13 16
2 Overijse 20 16 12 16
1 Pannerden 16 3 16 12
2 Poperinge 30 7 11 16
2 Rijkevorsel 17 15 16 16
1 Sint-Oedenrode 41 5 13 20
1 Slochteren 24 34 14 24
1 Tegelen 8 18 13 13
1 Zierikzee 15 14 12 14

Calculation of the average of lexicale change, morphological change and change in the sound components per location.
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Calculation of MSE*

• The total variation between subjects is:

SSS = 3 × [(9 − 14.7)
2
+ (16 − 14.7)

2
+ ...] = 1239.2

• DFS = Degrees of Freedom of Subject = number of subjects in each group -1

DFS = 25 -1 = 24

• SSE* = SSE - SSS

SSE* = 3408.0 - 1239.2 = 2168.8.

• DFE* = DFE - DFS

DFE* = 72 - 24 = 48.

• Now we calculate:

MSE∗ =
SSE∗
DFE∗

=
2168.8

48
= 45.2
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Calculation of test statistic F

• Test statistic:

F =
MSG

MSE∗
=

852.6

45.2
= 18.9

• Note that this F is larger than the F we found earlier in the one-factor ANOVA design

(where F=18.0)
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Assumptions

• Randomness:

Cases should be derived from a random sample, and scores from different participants

should be independent of each other.

• Normality:

each sample (3 linguistic levels = 3 samples) is drawn from a normally distributed

population. Use normal quantile plots and the Shapiro-Wilk test.

• Homogeneity of variance:

the groups (in our case three groups) should have the same variance. Use Levene’s test

and Hartley’s test.

• Sphericity:

refers to the equality of variances of the differences between the levels.
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Sphericity

• In our example, we have three levels:

lexis, morphology, sound components.

• We form all possible pairs:

lexis/morphology, lexis/sound components, morphology/sound components.

• For each pair we calculate the differences, these differences should have approximately

equal variances.

• Mauchly’s Test of Sphericity: a statistical test with the null hypothesis that the

variances of the differences between the levels are equal.

• If p < .05 the condition of sphericity is not met.

• If the condition of sphericity is not met, consider that Greenhouse-Geisser correction

in the SPSS output.

22



Application of Mauchly’s Test of Sphericity to our example in SPSS. The p value (Sig.) is

smaller than 0.05, therefore we may not assume that the assumption of sphericity is met.
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After LingLevel/Sphericity Assumed we find SSG, DFG en MSG. After Error(LingLevel)/Sphericity

Assumed we find SSE*, DFE* en MSE*.

Since we obtained a signficant result with the Mauchly’s Test of Sphericity, we used the results of the
Greenhouse-Geisser conversative F test. Conservative means: H0 is less likely to be rejected.
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Effect size

• SPSS also gives the Eta Squared. This is the same as the determination coefficient

R2:

R
2
=

SSG

SSG + SSE∗
=

1703.440

1703.440 + 2168.907
= 0.440

• About 44% of the dialect change measurements is explained by the distinction in three

linguistic levels (lexis, morphology, sound components).

• Conclusion: the measurements of dialect change at the three linguistic levels differ

significantly at the 5% level: F (1.418, 34.033) = 18.849, p < 0.001. R2 = 0.440.
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Contrasts and multiple comparisons

• Now we know that the measurements of dialect change at the three linguistic levels

differ significantly.

• Which pairs of population means differ from each other?

• In SPSS it is not possible to specify contrasts in the way we did for one-way ANOVA’s.

However, multiple comparisons (posthoc tests) can be carried out.

• When doing multiple comparisons, the Tukey test is not recommended (Gray & Kinnear

2012, p. 326), but the Bonferroni and Sidak modifications are recommended.

• Both the Bonferroni and the Sidak test are more conservative than the Tukey test

(i.e. H0 is less likely rejected, the p values are a bit larger), Bonferroni is even more

conservative than Sidak.
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Multiple comparisons on the basis of the Bonferronie modification. 1 = lexis, 2 =

morphology, 3 = sound components. Note that there is not a significant difference

between morphology and sound components.
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Profile plot. 1 = lexis, 2 = morphology, 3 = sound components. The graph confirms our results: lexis

is different compared to the other linguistic levels, but the difference between morphology and sound

components is much smaller, we found that they do not differ significantly.
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Factorial repeated measures ANOVA

• We looked at one-way repeated measures ANOVA, i.e. we have one independent

variable.

• In our case the independent variable is linguistic level having levels ‘lexicale change’,

‘morphological change’ and ’change in the sound components’.

• Multi-way or factorial repeated measures ANOVA compares several means when there

are two or more independent variables, and the same subjects have been used in all

experimental conditions.
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Non-parametric equivalents

• Non-parametric alternatives for one-way repeated measures ANOVA:

◦ Friedman test:

used for ordinal data. In case this test gives a significant result, multiple comparisons

are made by pairwise comparisons of the variables with the Wilcoxon signed-rank

test, with the Bonferroni correction.

◦ Cochran’s Q test:

can be used for nominal data.

• Both tests are available in SPSS.
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